Skip to main content

Pierrotlc's group workspace

Non Linear GAN - 32x32

What makes this group special?
Tags
Notes
Author
State
Finished
Start time
January 19th, 2022 12:29:55 PM
Runtime
4h 13m 8s
Tracked hours
4h 12m 59s
Run path
pierrotlc/AnimeStyleGAN/on6nj8ja
OS
Linux-5.15.11-76051511-generic-x86_64-with-glibc2.10
Python version
3.8.5
Git repository
git clone git@github.com:Futurne/AnimeStyleGAN.git
Git state
git checkout -b "wise-silence-25" 7bdc572b3306d30c320075134f0994637414e140
Command
launch_training.py
System Hardware
CPU count16
GPU count1
GPU typeNVIDIA GeForce RTX 3080 Laptop GPU
W&B CLI Version
0.12.9
Config

Config parameters are your model's inputs. Learn more

  • {} 19 keys
    • 128
    • "cuda"
    • 32
    • 32
    • 500
    • 0.001
    • 0.0001
    • 128
    • 8
    • 4
    • 3
    • "Discriminator( (first_conv): Conv2d(3, 8, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (blocks): ModuleList( (0): DiscriminatorBlock( (convs): ModuleList( (0): Sequential( (0): Conv2d(8, 8, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (1): BatchNorm2d(8, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): LeakyReLU(negative_slope=0.01) ) (1): Sequential( (0): Conv2d(8, 8, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (1): BatchNorm2d(8, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): LeakyReLU(negative_slope=0.01) ) (2): Sequential( (0): Conv2d(8, 8, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (1): BatchNorm2d(8, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): LeakyReLU(negative_slope=0.01) ) (3): Sequential( (0): Conv2d(8, 8, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (1): BatchNorm2d(8, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): LeakyReLU(negative_slope=0.01) ) ) (downsample): Conv2d(8, 16, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) ) (1): DiscriminatorBlock( (convs): ModuleList( (0): Sequential( (0): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): LeakyReLU(negative_slope=0.01) ) (1): Sequential( (0): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): LeakyReLU(negative_slope=0.01) ) (2): Sequential( (0): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): LeakyReLU(negative_slope=0.01) ) (3): Sequential( (0): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): LeakyReLU(negative_slope=0.01) ) ) (downsample): Conv2d(16, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) ) (2): DiscriminatorBlock( (convs): ModuleList( (0): Sequential( (0): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): LeakyReLU(negative_slope=0.01) ) (1): Sequential( (0): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): LeakyReLU(negative_slope=0.01) ) (2): Sequential( (0): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): LeakyReLU(negative_slope=0.01) ) (3): Sequential( (0): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): LeakyReLU(negative_slope=0.01) ) ) (downsample): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) ) (3): DiscriminatorBlock( (convs): ModuleList( (0): Sequential( (0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): LeakyReLU(negative_slope=0.01) ) (1): Sequential( (0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): LeakyReLU(negative_slope=0.01) ) (2): Sequential( (0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): LeakyReLU(negative_slope=0.01) ) (3): Sequential( (0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): LeakyReLU(negative_slope=0.01) ) ) (downsample): Conv2d(64, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) ) (4): DiscriminatorBlock( (convs): ModuleList( (0): Sequential( (0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): LeakyReLU(negative_slope=0.01) ) (1): Sequential( (0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): LeakyReLU(negative_slope=0.01) ) (2): Sequential( (0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): LeakyReLU(negative_slope=0.01) ) (3): Sequential( (0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): LeakyReLU(negative_slope=0.01) ) ) (downsample): Conv2d(128, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) ) ) (classify): Sequential( (0): Conv2d(256, 1, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (1): Flatten(start_dim=1, end_dim=-1) ) )"
    • "StyleGAN( (mapping): MappingNetwork( (norm): LayerNorm((32,), eps=1e-05, elementwise_affine=True) (fully_connected): ModuleList( (0): Sequential( (0): Linear(in_features=32, out_features=32, bias=True) (1): LayerNorm((32,), eps=1e-05, elementwise_affine=True) (2): LeakyReLU(negative_slope=0.01) ) (1): Sequential( (0): Linear(in_features=32, out_features=32, bias=True) (1): LayerNorm((32,), eps=1e-05, elementwise_affine=True) (2): LeakyReLU(negative_slope=0.01) ) (2): Sequential( (0): Linear(in_features=32, out_features=32, bias=True) (1): LayerNorm((32,), eps=1e-05, elementwise_affine=True) (2): LeakyReLU(negative_slope=0.01) ) ) (out_layer): Linear(in_features=32, out_features=32, bias=True) ) (synthesis): SynthesisNetwork( (blocks): ModuleList( (0): SynthesisBlock( (conv2): Sequential( (0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): LeakyReLU(negative_slope=0.01) ) (ada_in): AdaIN() ) (1): SynthesisBlock( (upsample): ConvTranspose2d(128, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) (conv1): Sequential( (0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): LeakyReLU(negative_slope=0.01) ) (conv2): Sequential( (0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): LeakyReLU(negative_slope=0.01) ) (ada_in): AdaIN() ) (2): SynthesisBlock( (upsample): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) (conv1): Sequential( (0): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): LeakyReLU(negative_slope=0.01) ) (conv2): Sequential( (0): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): LeakyReLU(negative_slope=0.01) ) (ada_in): AdaIN() ) (3): SynthesisBlock( (upsample): ConvTranspose2d(32, 16, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) (conv1): Sequential( (0): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): LeakyReLU(negative_slope=0.01) ) (conv2): Sequential( (0): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): LeakyReLU(negative_slope=0.01) ) (ada_in): AdaIN() ) ) (to_rgb): Conv2d(16, 3, kernel_size=(1, 1), stride=(1, 1)) ) )"
    • "SGD ( Parameter Group 0 dampening: 0 lr: 0.001 momentum: 0 nesterov: False weight_decay: 0 )"
    • "Adam ( Parameter Group 0 amsgrad: False betas: (0.9, 0.999) eps: 1e-08 lr: 0.0001 weight_decay: 0 )"
    • 0
    • "<torch.utils.data.dataloader.DataLoader object at 0x7f42b3754af0>"
    • "<torch.utils.data.dataloader.DataLoader object at 0x7f42b3754a00>"
    • 1
Summary

Summary metrics are your model's outputs. Learn more

  • {} 15 keys
    • {} 7 keys
      • 0.1874294061871136
      • 1.689500514198752
      • 0.8419336325982038
      • 0.17321660501115463
      • 1.862717123592601
      • 0.8128556784461526
      • 0.20794815088019653
      • 0.18630952682150037
      • 1.6962692682680331
      • 0.8430801806481261
      • 0.1718536939864096
      • 1.868122963528884
      • 0.8134977166589937
      • 0.20718951758585477
    Artifact Outputs

    This run produced these artifacts as outputs. Total: 3. Learn more